Speech extraction based on ICA and audio-visual coherence

نویسندگان

  • David Sodoyer
  • Laurent Girin
  • Christian Jutten
  • Jean-Luc Schwartz
چکیده

We present a new approach to the source separation problem for multiple speech signals. Using the extra visual information of the speaker’s face, the method aims to extract an acoustic speech signal from other acoustic signals by exploiting its coherence with the speaker’s lip movements. We define a statistical model of the joint probability of visual and spectral audio input for quantifying the audio-visual coherence. Then, separation can be achieved by maximising this joint probability. Experiments on additive mixtures of 2, 3 and 5 sources show that the algorithm performs well, and systematically better than the classical BSS algorithm JADE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bimodal coherence based scale ambiguity cancellation for target speech extraction and enhancement

We present a novel method for extracting target speech from auditory mixtures using bimodal coherence, which is statistically characterised by a Gaussian mixture modal (GMM) in the offline training process, using the robust features obtained from the audio-visual speech. We then adjust the ICA-separated spectral components using the bimodal coherence in the time-frequency domain, to mitigate th...

متن کامل

Use of Bimodal Coherence to Resolve Spectral Indeterminacy in Convolutive BSS

Recent studies show that visual information contained in visual speech can be helpful for the performance enhancement of audio-only blind source separation (BSS) algorithms. Such information is exploited through the statistical characterisation of the coherence between the audio and visual speech using, e.g. a Gaussian mixture model (GMM). In this paper, we present two new contributions. An ada...

متن کامل

Integrated Phoneme Subspace Method for Speech Feature Extraction

Speech feature extraction has been a key focus in robust speech recognition research. In this work, we discuss data-driven linear feature transformations applied to feature vectors in the logarithmic mel-frequency filter bank domain. Transformations are based on principal component analysis (PCA), independent component analysis (ICA), and linear discriminant analysis (LDA). Furthermore, this pa...

متن کامل

Further experiments on audio-visual speech source separation

Looking at the speaker’s face seems useful to better hear a speech signal and extract it from competing sources before identification. This might result in elaborating new speech enhancement or extraction techniques exploiting the audio-visual coherence of speech stimuli. In this paper, we present a set of experiments on a novel algorithm plugging audio-visual coherence estimated by statistical...

متن کامل

Developing an audio-visual speech source separation algorithm

Looking at the speaker s face is useful to hear better a speech signal and extract it from competing sources before identification. This might result in elaborating new speech enhancement or extraction techniques exploiting the audiovisual coherence of speech stimuli. In this paper, a novel algorithm plugging audio-visual coherence estimated by statistical tools on classical blind source separa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003